Kiln » TortoiseHg » TortoiseHg
Clone URL:  
graphcell.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""Cell renderer for directed graph. This module contains the implementation of a custom GtkCellRenderer that draws part of the directed graph based on the lines suggested by the code in graph.py. Because we're shiny, we use Cairo to do this, and because we're naughty we cheat and draw over the bits of the TreeViewColumn that are supposed to just be for the background. """ __copyright__ = "Copyright 2005 Canonical Ltd." __author__ = "Scott James Remnant <scott@ubuntu.com>" import math import gtk import gobject import pango import cairo class CellRendererGraph(gtk.GenericCellRenderer): """Cell renderer for directed graph. Properties: node (column, colour) tuple to draw revision node, in_lines (start, end, colour) tuple list to draw inward lines, out_lines (start, end, colour) tuple list to draw outward lines. """ columns_len = 0 __gproperties__ = { "node": ( gobject.TYPE_PYOBJECT, "node", "revision node instruction", gobject.PARAM_WRITABLE ), "in-lines": ( gobject.TYPE_PYOBJECT, "in-lines", "instructions to draw lines into the cell", gobject.PARAM_WRITABLE ), "out-lines": ( gobject.TYPE_PYOBJECT, "out-lines", "instructions to draw lines out of the cell", gobject.PARAM_WRITABLE ), } def do_set_property(self, property, value): """Set properties from GObject properties.""" if property.name == "node": self.node = value elif property.name == "in-lines": self.in_lines = value elif property.name == "out-lines": self.out_lines = value else: raise AttributeError, "no such property: '%s'" % property.name def box_size(self, widget): """Calculate box size based on widget's font. Cache this as it's probably expensive to get. It ensures that we draw the graph at least as large as the text. """ try: return self._box_size except AttributeError: pango_ctx = widget.get_pango_context() font_desc = widget.get_style().font_desc metrics = pango_ctx.get_metrics(font_desc) ascent = pango.PIXELS(metrics.get_ascent()) descent = pango.PIXELS(metrics.get_descent()) self._box_size = ascent + descent return self._box_size def set_colour(self, ctx, colour, bg, fg): """Set the context source colour. Picks a distinct colour based on an internal wheel; the bg parameter provides the value that should be assigned to the 'zero' colours and the fg parameter provides the multiplier that should be applied to the foreground colours. """ mainline_color = ( 0.0, 0.0, 0.0 ) colours = [ ( 1.0, 0.0, 0.0 ), ( 1.0, 1.0, 0.0 ), ( 0.0, 1.0, 0.0 ), ( 0.0, 1.0, 1.0 ), ( 0.0, 0.0, 1.0 ), ( 1.0, 0.0, 1.0 ), ] if colour == 0: colour_rgb = mainline_color else: colour_rgb = colours[colour % len(colours)] red = (colour_rgb[0] * fg) or bg green = (colour_rgb[1] * fg) or bg blue = (colour_rgb[2] * fg) or bg ctx.set_source_rgb(red, green, blue) def on_get_size(self, widget, cell_area): """Return the size we need for this cell. Each cell is drawn individually and is only as wide as it needs to be, we let the TreeViewColumn take care of making them all line up. """ box_size = self.box_size(widget) + 1 width = box_size * (self.columns_len + 1) height = box_size # FIXME I have no idea how to use cell_area properly return (0, 0, width, height) def on_render(self, window, widget, bg_area, cell_area, exp_area, flags): """Render an individual cell. Draws the cell contents using cairo, taking care to clip what we do to within the background area so we don't draw over other cells. Note that we're a bit naughty there and should really be drawing in the cell_area (or even the exposed area), but we explicitly don't want any gutter. We try and be a little clever, if the line we need to draw is going to cross other columns we actually draw it as in the .---' style instead of a pure diagonal ... this reduces confusion by an incredible amount. """ ctx = window.cairo_create() ctx.rectangle(bg_area.x, bg_area.y, bg_area.width, bg_area.height) ctx.clip() box_size = self.box_size(widget) ctx.set_line_width(box_size / 8) ctx.set_line_cap(cairo.LINE_CAP_ROUND) # Draw lines into the cell for start, end, colour in self.in_lines: self.render_line (ctx, cell_area, box_size, bg_area.y, bg_area.height, start, end, colour) # Draw lines out of the cell for start, end, colour in self.out_lines: self.render_line (ctx, cell_area, box_size, bg_area.y + bg_area.height, bg_area.height, start, end, colour) # Draw the revision node in the right column (column, colour) = self.node ctx.arc(cell_area.x + box_size * column + box_size / 2, cell_area.y + cell_area.height / 2, box_size / 5, 0, 2 * math.pi) self.set_colour(ctx, colour, 0.0, 0.5) ctx.stroke_preserve() self.set_colour(ctx, colour, 0.5, 1.0) ctx.fill() def render_line (self, ctx, cell_area, box_size, mid, height, start, end, colour): if start is None: x = cell_area.x + box_size * end + box_size / 2 ctx.move_to(x, mid + height / 3) ctx.line_to(x, mid + height / 3) ctx.move_to(x, mid + height / 6) ctx.line_to(x, mid + height / 6) elif end is None: x = cell_area.x + box_size * start + box_size / 2 ctx.move_to(x, mid - height / 3) ctx.line_to(x, mid - height / 3) ctx.move_to(x, mid - height / 6) ctx.line_to(x, mid - height / 6) else: startx = cell_area.x + box_size * start + box_size / 2 endx = cell_area.x + box_size * end + box_size / 2 ctx.move_to(startx, mid - height / 2) if start - end == 0 : ctx.line_to(endx, mid + height / 2) else: ctx.curve_to(startx, mid - height / 5, startx, mid - height / 5, startx + (endx - startx) / 2, mid) ctx.curve_to(endx, mid + height / 5, endx, mid + height / 5 , endx, mid + height / 2) self.set_colour(ctx, colour, 0.0, 0.65) ctx.stroke()